
Simpli�ed Eulerian-Frame Material-Motion Corrections for

Radiative Transfer Calculations

J. E. Morel

Transport Methods Group, XTM

Applied theoretical and Computational Physics Division

Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract

Simpli�ed material-motion corrections are presented for the Eulerian-frame ra-

diative transfer equation in a regime characterized by material velocities that are

very small relative to the speed of light. Our corrections are intended to accurately

treat only the overall exchange of energy and momentum between the radiation and

material �elds. Detailed radiation spectral e�ects are not accurately treated by our

corrections. Correction terms that are fully accurate to O(v=c) have a di�erential

form that makes them costly and di�cult to implement. Our simpli�ed corrections

have a non-di�erential form, but they result in total energy conservation and mo-

mentum conservation, and they are correct to O(v=c) in the equilibrium di�usion

limit.
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The purpose of this report is to describe a simpli�ed material-motion treatment for

the Eulerian-frame radiative transfer equation. In the Eulerian frame, material motion

e�ectively modi�es the photon interaction cross-sections and sources in a fairly complex

way. Incorporating the exact modi�cations leads to equations that are very di�cult to

solve numerically. Neglecting these corrections leads to a lack of energy conservation. In

particular, the kinetic energy change in the material due to radiation momentum deposition

is not removed from the radiation �eld. Even if the ratio of material speed to the speed of

light (v=c) is small, a signi�cant error can occur over time due to the steady accumulation

of small conservation errors.

We restrict our attention to a regime characterized by v
2
=c

2
� v=c. Material-motion

corrections must be made to the Eulerian-frame radiation transport equation in this regime,

but the non-relativistic hydrodynamic equations need not be modi�ed because they are

correct to O(v=c).

There are two approaches for performing radiation transport calculations in this regime:

1. Use the Eulerian-frame transport equation in conjunction with opacities and sources

expanded to �rst-order in v=c.

2. Use the co-moving or uid-frame transport equation expanded to �rst-order in v=c.

The �rst approach results in a transport equation that contains frequency derivatives of
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the absorption cross-section together with frequency derivatives of certain moments of the

radiation intensity. The second approach results in a transport equation that contains

angular and frequency derivatives of the radiation intensity. The absorption cross-section

often varies rapidly with frequency due to resonance e�ects. Such behavior in the absorption

cross-section causes similar behavior in the radiation intensity. Thus frequency derivatives

of the absorption cross section and frequency derivatives of the radiation intensity are

di�cult to treat numerically.

It is our purpose to describe a simpli�ed material-motion treatment that avoids the

di�culties associated with traditional approaches. A simpli�ed treatment is possible be-

cause we seek only to obtain accurate radiation energy and momentum deposition in the

transport material. In principle, this makes it possible to obtain accurate hydrodynam-

ics solutions even though detailed di�erential e�ects of material motion on the radiation

intensity are neglected.

Our material motion treatment has several key properties:

1. Energy and momentum are conserved.

2. The treatment is exact in the streaming (optically-thin) limit, and correct to O(v=c)

in the equilibrium di�usion limit.

3. The treatment is exact in a certain sense for an in�nite medium in equilibrium moving
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at a constant speed.

We begin the description of our method with the Eulerian-frame radiation transport equa-

tion:

1

c

@I

@t
+
�!


 �

�!

r�I + �tI =
1

4�
�scE� + �aB(T ) ; (1)

where

t is the time,

�!


 is the angular variable,

� is the frequency,

T is the material temperature,

�a is the absorption cross section (length
�1
),

�s is the scattering cross section (length
�1
),

�t is the total cross-section (�a + �s),

I is the angular intensity (energy=area� time� frequency � steradian),

E� is the frequency-dependent radiation energy density (energy=volume� frequency),

and B is the Planck function (energy=area� time� frequency � steradian).

Note that cE� represents the angle-integrated intensity:

cE� =

Z
4�

I d
 ; (2)
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and that

B =
2h�3

c2
[exp (h�=kT )� 1]

�1
; (3)

where h is Planck's constant and k is Boltzmann's constant.

The central theme of our approximation is to add non-di�erential terms to Eq. (1)

which ensure that the radiation energy equation and the radiation momentum equation

are correct to O(v=c) in the equilibrium di�usion limit. Speci�cally, the corrected version

of Eq. (1) is:
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c

@I

@t
+
�!


 �

�!

r�I + �tI =
1

4�
�scE� + �aB(T ) +

1

4�
C0 +

3

4�

�!

C 1 �

�!


 ; (4)

where the coe�cients of the correction terms are:

C0 = (�a � �s)
�!

F
�

�
�

�!

v

c
; (5)

�!

C 1 = �t

4

3
cE�

�!

v

c
; (6)

where
�!

F
�

�
is an approximation to the uid-frame frequency-dependent radiation ux:

�!

F
�

�
=

�!

F � �

4

3
cE�

�!

v

c
; (7)

and
�!

F � is the frequency-dependent radiation ux:

�!

F � =

Z
4�

�!


 I d
 : (8)
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In order to physically understand what the correction term is doing, we �rst integrate

Eq. (4) over all angles and frequencies to obtain the corrected radiation energy equation:

@Er

@t
+
�!

r�
�!

F +
Z
1

0

�a (cE
�

�
� 4�B) d� = ��

�!

a
r �
�!

v ; (9)

where Er is the total radiation energy density:

Er =
1

c

Z
1

0

Z
4�

I d
 d� ; (10)

�!

F is the total radiation energy ux:

�!

F =

Z
1

0

Z
4�

�!


 I d
 d� ; (11)

cE�
�
is an approximation to the uid-frame angle-integrated intensity:

cE�
�
= cE

�
� 2

�!

F
�

�
�

�!

v

c
; (12)

and
�!

a
r
is an approximation to the radiation acceleration (i.e., the material acceleration

due to radiation momentum deposition:

�!

a
r =

Z
1

0

�t

�c

�!

F
�

�
d� : (13)

Next we multiply Eq. (4) by 1

c

�!


 and integrate over all angles and frequencies to obtain

the corrected radiation momentum equation:

1

c2
@
�!

F

@t
+
�!

r�

�!

�!

P +
Z
1

0

�t

c

�!

F
�

d� = 0 ; (14)
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where

�!

�!

P is the radiation pressure tensor:

�!

�!

P =
1

c

Z
4�

Z
1

0

�!




�!


 I d� d
 : (15)

It is appropriate at this point to discuss the origins of our expressions for
�!

F
�

�
and cE�

�
.

An expression for the uid-frame total radiation ux that is correct to O(v=c) is [1]:

�!

F
�

=
�!

F � cE
r

�!

v

c
� c

�!

�!

P �

�!

v

c
; (16)

To obtain Eq. (7), we �rst substitute
1

3

�!

E r for

�!

�!

P in Eq. (16):

�!

F
�

=
�!

F �

4

3
cEr

�!

v

c
; (17)

This substitution is exact in the equilibrium di�usion limit. Next we obtain Eq. (7) by

simply replacing all the quantities in Eq. (17) with their frequency-dependent counterparts.

There is really no justi�cation for this other than the fact that this substitution yields the

properties we seek in our corrected transport equation. An expression for the uid-frame

angle/frequency-integrated radiation intensity that is correct to O(v=c) is [1]:

cE�
r
= cEr � 2

�!

F �

�!

v

c
; (18)

To obtain Eq. (12), we �rst substitute
�!

F
�

(as de�ned in Eq. (17)) for
�!

F in Eq. (18):

cE�
r
= cEr � 2

�!

F
�

�

�!

v

c
; (19)
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It can be seen from Eq. (17) that
�!

F
�

di�ers from
�!

F by a term of O(v=c). Since
�!

F in

Eq. (18) is multiplied by a term of O(v=c), the substitution of
�!

F
�

for
�!

F results in a

change of O(v2=c2). Thus Eq. (19) is correct to O(v=c). Next we obtain Eq. (12) from

Eq. (19) simply by replacing all the quantities in Eq. (19) with their frequency-dependent

counterparts. Again, there is really no justi�cation for this other than the fact that this

substitution yields the properties we seek in our corrected transport equation.

Examining Eqs. (9) and (14), and recognizing that �
�!

a
r �

�!

v represents the rate of change

per unit volume of the material kinetic energy due to radiation momentum deposition, we

see that the correction term in Eq. (4) achieves the following:

1. The uncorrected Eulerian-frame total energy absorption rate is replaced with an

approximate uid-frame total energy absorption rate.

2. The uncorrected Eulerian-frame total momentum deposition rate is replaced with an

approximate uid-frame total momentum deposition rate.

3. The rate of change per unit volume in material kinetic energy due to radiation mo-

mentum deposition is subtracted from the radiation energy �eld.

We identify the photon energy deposited in the material internal energy �eld and the photon

momentum deposited in the material with the corrected reaction rates. For instance, in
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a Lagrangian calculation, the internal material energy equation would take the following

form:

De

Dt
+ Pm

�!

r�
�!

v =

Z
1

0

�a (cE
�

v
� 4�B) d� ; (20)

where Pm is the material pressure. Similarly, the momentum equation would be:

D
�!

v

Dt
= �

1

�

�!

rP
m
+
�!

a
r

: (21)

Taking the dot product of the material velocity with Eq. (21), we obtain the kinetic energy

equation:

1

2

D
�!

v �
�!

v

Dt
= �

1

�

�!

rPm �
�!

v +
�!

a
r �
�!

v : (22)

It is not di�cult to see that our approximation results in total energy and momentum

conservation. In particular:

1. Note from Eqs. (9) and (20) that the energy removed from the photon energy �eld via

absorption is added to the material internal energy �eld, and that the energy added

to the photon energy �eld via Planck emission is subtracted from material internal

energy �eld.

2. Note from Eqs. (13), (14) and (21) that the momentum removed from the photon

momentum �eld via absorption and scattering is added to the material momentum

�eld.

9



3. Note from Eqs. (9) and (22) that the change in the material kinetic energy due to

radiation momentum deposition is subtracted from the radiation energy �eld.

Our corrected transport equation includes terms of order v2=c2. In particular:

C0 = (�a � �s)
�!

F

�

�
�

�!

v

c

= (�
a
� �

s
)

0
@�!F �

�

�!

v

c
�

4

3
cE

�

v
2

c2

1
A ; (23)

It is signi�cant to note that rigorous energy conservation is not obtained if all terms of

order v2=c2 are neglected. For instance, as can be seen from Eqs. (7) and (13), the radiation

acceleration contains only an O(v=c) term:

�!

a
r =

Z
1

0

�t

�c

0
@�!F � �

4

3
cE�

�!

v

c

1
A d� ; (24)

but when the radiation acceleration is used to calculate the rate of change of the material

kinetic energy due to radiation momentum deposition, an O(v2=c2) term arises:

�!

a
r
�

�!

v =
�
t

�

0
B@�!F � �

�!

v

c
�

4

3
cE�

�!

v
2

c2

1
CA : (25)

Thus if one neglects the O(v2=c2) term in Eq. (25), one neglects to subtract from the

radiation energy equation a small but non-zero fraction of the rate of change of the material

kinetic energy due to radiation momentum deposition.

Mihalas and Klein [2] have given an Eulerian-frame transport formulation with material-

motion corrections that is correct to O(v=c). We now show that our radiation energy and
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momentum equations are identical to their radiation energy and momentum equations to

O(v=c) in the equilibrium di�usion limit. The radiation energy equation of Mihalas and

Klein is:

@Er

@t
+
�!

r�
�!

F +

Z
1

0

�a

0
@cE� � 2

�!

F � �

�!

v

c
� 4�B

1
A d� =

�

Z
1

0

 
�t � �

@�a

@�

!
�!

F � �

�!

v

c
d� : (26)

There are two di�erences between Eq. (26) and our radiation energy equation, Eq. (9):

1. Equation (26) contains
�!

F � �

�!

v
c

in various places rather than
�!

F
�

�
�

�!

v
c
. However,

�!

F �

and
�!

F
�

�
are identical to O(v=c).

2. Equation (9) does not contain the term proportional to � @�a

@�

that appears in Eq. (26).

This term does not appear in the equilibrium di�usion limit because the frequency

dervative of the absorption cross-section must be \small" in a particular sense for

the limit to exist.[3] Thus we �nd that Eqs. (9) and (26) agree to O(v=c) in the

equilibrium di�usion limit.

The radiation momentum equation of Mihalas and Klein is:

1

c2
@
�!

F

@t
+
�!

r�

�!

�!

P +

Z
1

0

�t

c

�!

F � d� =

Z
1

0

(�a4�B + �scE�)

�!

v

c
d�+

Z
1

0

"
�a + �s + �

@�
a

@�

#
�!

�!

P � �

�!

v

c
d� ; (27)
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where

�!

�!

P �
is the frequency-dependent radiation pressure:

�!

�!

P � =
1

c

Z
4�

�!



�!


 I d
 : (28)

As noted previously, the term proportional to � @�a

@�
does not appear in the equilibrium

di�usion limit. Furthermore, the following equivalences apply in the equilibrium di�usion

limit,

4�B ! cE
�

; (29)

and

�!

�!

P �
!

1

3
E� : (30)

Eliminating the term proportional to � @�a

@�
in Eq. (27) and substituting from Eqs. (29) and

(30) into the material-motion terms in Eq. (27), we obtain Eq. (14). Thus Eqs. (14) and

(27) are identical in the equilibrium di�usion limit.

In the equilibrium di�usion limit, the radiation energy and momentum equations rep-

resent a closed system for the radiation energy density and the total radiation ux. Since

our radiation energy and momentum equations are correct to O(v=c) in the equilibrium

limit, it follows that our transport equation is also correct to O(v=c) in that limit for

angle/frequency-integrated intensity quantities.

Consider a simple problem consisting of an in�nite medium in equilibrium at temper-

ature T0 moving at a constant velocity
�!

v 0. Our corrected transport equation yields the
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following respective solutions for the angle/frequency-integrated radiation intensity and the

radiation ux:

cEr = acT
4

0
; (31)

where a is the radiation constant,

�!

F = �
4

3
cEr

�!

v 0

c
: (32)

As expected, Eqs. (31) and (32) are correct to O(v=c). However, the solutions for the

uid-frame angle-frequency integrated radiation intensity, the uid frame radiation ux,

and the radiation acceleration are exact:

cE
�

r
= acT

4

0
; (33)

�!

F

�

= 0 ; (34)

�!

a
r = 0 : (35)

In closing we note that our corrected equation is exact in the streaming limit simply

because the photons do not interact with the material in this limit. Thus there is no need

to correct the cross sections. Indeed, if �a = �s = 0, our correction term is identically

zero. This is an advantage of using the Eulerian-frame transfer equation rather than the

uid-frame equation. The uid-frame equation retains complicated di�erential terms even

when the cross sections are identically zero.
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